
cessda.eu @CESSDA_Data

John Shepherdson
CESSDA Platform Delivery Director

CESSDA’s
Software
Maturity Model

DOI: 10.5281/zenodo.2588385

Outline

● Technical Infrastructure
● Protection of Assets
● CESSDA’s common interoperability characteristics
● Quality control
● Software acceptance criteria
● Software maturity levels
● Questions

2

Software Maturity Model

Was bottom up
- where is expertise, source code, documentation? ...

Opportunity: Transition to CESSDA ERIC

● Greenfield site for technical development/deployment
● Central hosting, monitoring and management
● Guidelines, policies and procedures

3

Technical Infrastructure

CESSDA Bitbucket Code repositories

Ensure CESSDA has access to and IPR for
• source code
• configuration files
• technical documentation

that underpin its tools and services

4

Protection of Assets

• Form for write access
• Contributor license agreement
•

• Working towards Open Source
• Apache 2 license
• Separate application code from deployment scripts

• excellent is always level 5

5

CESSDA Code Repositories

Guide development of various (software) tools and
services for CESSDA Research Infrastructure

• Promote good practice for software development
• Meet common interoperability characteristics

Separate Development, Staging and Production
environments

6

Technical Framework

Using Bitbucket cloud to host source code
and Google Cloud Platform to build, test and deploy

• Harmonise development tool chain for SPs
• Apply consistent set of tests (SonarQube, Selenium,

JMeter …)

Deploy Docker containers to Kubernetes clusters
• Managed ingress
• Auto scale up/down
• Rolling upgrades of containers

7

Technical Framework

Deployment Pipeline

Automated acceptance testing (up to a point):
- Jenkins pipelines for CI/CD
-

-

-

Plus other one-off tools
• excellent is always level 5

1. Loosely coupled but coordinated - enable Service
Providers to retain independence, yet fully interact in an
integrated service

2. Sustainable - enable medium and long term investment
and business change decisions to be made

3. Extensible - enable additional services to be built on or
around it, including adapting to changing functional
requirements over time

9

Common Interoperability
Characteristics

4. Maintainable - enable components to be updated when IT
specifications change

5. Standards based - enable coordinated and planned
changes to the coupled, but coordinated, services

10

Common Interoperability
Characteristics

How to achieve?

Set standards and guidelines
• REST APIs c/w API design standards
• Technical Architecture
• Software acceptance criteria (Software Maturity Levels)
• Common development environment

•

11

Quality Control

https://bitbucket.org/cessda/cessda.guidelines.api/wiki/DesignGuidelines.md
http://bit.ly/tech_arch4_0
http://bit.ly/sml_doc2

Standards and guidelines
• Adoption of 12 Factor App principles
• User Experience guide
• Software Adoption Policy
• Software Adoption Procedure
• Contributors’ License Agreement

12

Quality Control

http://12factor.net/
http://bit.ly/user_experience_2_0
http://bit.ly/sa_pol2
http://bit.ly/sa_proc2

Software Maturity Levels
• ensure technical quality of the research infrastructure
• guidance on standards

•minimum, expected and excellent

• originally based on NASA’s 9 RRLs
NASA Earth Science Data Systems Software Reuse Working Group (2010). Reuse Readiness Levels
(RRLs), Version 1.0. April 30, 2010. Available: http://www.esdswg.org/softwarereuse/Resources/rrls/

• revised in light of ‘Capability Development Model’ from
CESSDA SaW project

13

Quality Control

https://wiki.earthdata.nasa.gov/pages/viewpage.action?pageId=49446977
https://www.cessda.eu/Projects/All-projects/CESSDA-SaW

How do standards and guidelines help us achieve
them?

14

Common Interoperability
Characteristics

Adopt (micro) services architecture based on RESTful web
service APIs
● provides a mechanism for reusing and combining software

artefacts

Use Docker containers

See also 12 factor app, number 7 (Port binding - Export services via port
binding)

15

Loosely coupled but coordinated

http://12factor.net/port-binding
http://12factor.net/port-binding

The provision of common standards
• Technical Architecture document

Common development and test environment
• via the technical infrastructure

Deployment environment
• via extensions to the technical infrastructure

Central repositories: source-code, containers

See also 12 factor app, number 1 (Codebase - One codebase tracked in
revision control, many deploys)

16

Sustainable

http://12factor.net/codebase
http://12factor.net/codebase

Service API is key
• Integration point for new services
• Combination point for building new features

Version and support two versions simultaneously
• Allows services to evolve, without breaking contract
provided to consumers

API design standards

See also 12 factor app, number 8 (Concurrency - Scale out via the process
model)
See also 12 factor app, number 9 (Disposability - Maximize robustness with
fast startup and graceful shutdown)

17

Extensible

https://bitbucket.org/cessda/cessda.guidelines.api/wiki/DesignGuidelines.md
http://12factor.net/concurrency
http://12factor.net/concurrency
http://12factor.net/disposability
http://12factor.net/disposability

Again, service API is key
• implementation of a service can be changed as required,
to take advantage of developments in software technology

• location of services can be changed as required, to take
advantage of developments in hardware technology

Managed Ingress, Reverse Proxy, DNS

See also 12 factor app, number 2 (Dependencies - Explicitly declare and isolate
dependencies)

18

Maintainable

http://12factor.net/dependencies
http://12factor.net/dependencies

● Provision of common architectural standards (via Technical
Architecture)

● Consistent calling and return structures and formats
● Versioned API (API design standards)

Software Maturity Model

See also 12 factor app, number 4 (Backing services - Treat backing services as
attached resources)

19

Standards Based

https://bitbucket.org/cessda/cessda.guidelines.api/wiki/DesignGuidelines.md
http://12factor.net/backing-services
http://12factor.net/backing-services

1. Documentation (end user, operational, developer)
2. Intellectual property issues
3. Extensibility
4. Modularity
5. Packaging
6. Portability
7. Standards Compliance
8. Support
9. Verification and testing

10. Security (by design)
11. Internationalisation and Localization
12. Authentication and Authorisation

20

Acceptance Criteria

5 levels for each
• descriptive text to aid decision making
• plus ‘not applicable’

Minimum, expected and excellent level indicated
• minimum and expected will change over time

• excellent is always level 5

21

Acceptance Criteria

Software Maturity Levels

See also Software Maturity Levels document

http://bit.ly/sml_doc2

L1

Software Maturity Levels

L5

SML - Security

0 - Topic area is not relevant
1 - Security was addressed in the development phases up
to and including design (MINIMUM)
 2 - Security was addressed in the development phases
up to and including implementation.
3 - Security was addressed in the development phases up
to and including implementation. Developers have
undertaken appropriate Security training. (EXPECTED)
4 - Security was addressed in the development phases up
to and including verification and testing
5 - Security was addressed in the development phases up
to and including product release (EXCELLENT)

Software Maturity Levels

1 - Initial usability; software use is not recommended.

2 - Use is feasible; the software can be used by skilled
personnel but with considerable effort, cost and risk.

3 - Use is possible by most users; with some effort, cost,
and risk. A risk assessment should be made before use.

4 - Software is usable; with little effort, cost, and risk.

5 - Demonstrable usability; there is clear evidence that
the software is widely used by many users.

26

SML - Example

3 - Use is possible by most users; with some effort, cost, and risk. A risk
assessment should be made before use. (EXPECTED)

Structured collection of elements that identify and
describe the characteristics of effective preservation
processes and activities

• Organisational Infrastructure
• Digital Object Management
• Technical Infrastructure

See CESSDA Capability Development Model for details

Plus other one-off tools
• excellent is always level 5

27

Capability Development Model

https://www.cessda.eu/Tools-Services/For-Service-Providers/CESSDA-CDM

Any Questions?
(please contact john.shepherdson@cessda.eu)

Thanks for listening

